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Abstract Polyominos was extensively studied in chemistry and mathematics. The
spectrum of a (molecule) graph is the set of eigenvalues of its adjacency matrix. The
spectrum and the number of spanning trees of polyominos on the torus are determined
in this paper.
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1 Introduction

A polyomino, also called quadrilateral lattice, chessboard [3], square-cell configura-
tion or lattice animal [7,8,11], is a finite 2-connected geometric graph in which every
interior face is bounded by a regular square of side length 1 (i.e. called a cell). Poly-
ominos have attracted many mathematicians’, physicists’ and chemists’ considerable
attentions in history. Many interesting combinatorial subjects are yielded from them,
such as domination problem [3,5], spanning trees [12] and rook polyominal [10] etc.
Zhang and Zhang [13] gave a necessary and sufficient conditions for polyomino graphs
to have a Kekulé structure. Calkin and Wilf [1] counted the number of independent
sets in a polyomino graph. Merino and Welsh [9] considered the forest, colourings
and acyclic orientations on the polyomino.

An m × n polyomino, denoted by Pm,n , consists of mn sites arranged in an array
of M rows and N columns, see Fig. 1a. By adding edges a1an, b1bn, u jv j ( j =
1, 2, . . . , m − 2), an m × n polyomino with cylindrical boundary condition can be
gotten, denoted by Pc

m,n . By adding edges a1an, b1bn, u jv j ( j = 1, 2, . . . , m − 2)

and akbk+r (i = 1, 2, . . . , n, 0 ≤ r < n) to Pm,n , an m ×n polyomino with the twisted
toroidal boundary condition can be gotten, denoted by Pm,n,r .
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Fig. 1 a A m × n polyomino Pm,n ; b the labeling of Pm,n,r

Let G = (V (G), E(G)) denote a (molecule) graph with vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G). The degree ks of a vertex vs is the number of
edges attached to it. A k-regular graph is a graph with the property that each of its ver-
tices has the same degree k. The adjacency matrix A(G) of G is the n × n matrix with
elements A(G)s j = 1 if vs and v j are connected by an edge and zero otherwise. The
Laplacian matrix L(G) is the n×n matrix with the element L(G)s j = ksδs j − A(G)s j ,
where δs j is the Kronecker delta, equal to 1 if s = j and zero otherwise. Sup-
pose λ j ( j = 1, 2, . . . , n) are the eigenvalues of the adjacency matrix A(G). Sup-
pose μ j ( j = 1, 2, . . . , n) are the eigenvalues of the Laplacian matrix L(G), where
μ1 ≤ μ2 ≤ · · · ≤ μn . We know that μ1 = 0, then the number of spanning trees of a
graph G can be expressed by

t (G) = 1

n

n∏

j=2

μ j .
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It turns out that t (G) has asymptotically exponential growth; one defines the quantity
z(G) by

z(G) = lim|V (G)|→∞
log t (G)

|V (G)| .

This limit is known as the asymptotic tree number entropy, asymptotic growth constant
or thermodynamical limit.

The spectrum of Pc
m,n has been gotten (see for example Section 2.6 in [4]). It can

be expressed as follows:

2 cos
2kπ

n
+ 2 cos

jπ

m + 1
, k = 1, . . . , n, j = 1, . . . , m.

And the eigenvalue of Pm,n,0 can be expressed as follows (see for example Section
2.6 in [4]):

2 cos
2kπ

n
± 2 cos

2 jπ

m
, k = 0, 1, . . . , n − 1, j = 0, 1, . . . ,

m

2
− 1. (1)

Wu [12] has obtained closed-form expressions for the number of spanning tree of Pm,n

and the asymptotic tree number entropy is 1.1662.
In this paper, we consider the spectrum and spanning trees of Pm,n,r . In Sect. 2,

we present a lemma. The spectrum of Pm,n,r is obtained in Sect. 3 and the number of
spanning trees of Pm,n,r is gotten in Sect. 4.

2 A lemma

Firstly, we need a lemma. Denote the k block circulant matrix

⎛

⎜⎜⎜⎜⎜⎝

V0 V1 V2 · · · Vn−1
kVn−1 V0 V1 · · · Vn−2
kVn−2 kVn−1 V0 · · · Vn−3

...
...

. . .
. . .

...

kV1 kV2 · · · kVn−1 V0

⎞

⎟⎟⎟⎟⎟⎠

by k − circ(V0, V1, . . . , Vn−1).

Lemma 1 ([2]) Let V = k − circ(V0, V1, . . . , Vn−1) be a k block circulant matrix
over the complex number field, where all Vt are m × m matrices, t = 0, 1, . . . , n − 1.
Then

det V =
n−1∏

t=0

det(Jt ),

where Jt = V0 + V1ω + V2ω
2 + · · · + Vn−1ω

n−1, ω is a primitive nth root of k.
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3 The spectrum of square lattice

Theorem 2 If m is even, then the spectrum of the Pm,n,r can be expressed by

2 cos
2kπ

n
± 2 cos

(
2 jπ

m
+ 2rkπ

mn

)
, k = 0, 1, . . . , n − 1, j = 0, 1, . . . ,

m

2
− 1.

Proof Label the vertices of the Pm,n,r as Fig. 1b shows. Then the adjacent matrix
of it has the following form:

A(G) = 1 − circ

⎛

⎜⎝Am, Em

r−2︷ ︸︸ ︷
, 0m, . . . , 0m, Bm, 0m, . . . , 0m, BT

m

r−2︷ ︸︸ ︷
, 0m, . . . , 0m, Em

⎞

⎟⎠ ,

where

Am =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 1
0 0 1 0 · · · 0 0
0 1 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 0 1 0
0 0 · · · 0 1 0 1
1 0 0 · · · 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

, Bm =

⎛

⎜⎜⎜⎝

0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟⎟⎟⎠

m×m

.

BT is the transpose of B, Em is the m × m identity matrix, 0m is an m × m matrix
and all its entries are zero.

Next, we calculate the eigenvalue value of A(G). The characteristic polynomial of
A(G) is

φ(λ) = |λEmn − A(G)| .

By Lemma 1, we have

φ(λ) =
n−1∏

k=0

|λEm − f (ωk)| ,

where f (x) = A + x E + xr B + xn−r+1 BT + xn−1 E and ωk = cos(2kπ/n) +
i sin(2kπ/n).

Note that

λEm − f (ωk) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a −b 0 · · · 0 0 −1
−b−1 −a −1 0 · · · 0 0

0 −1 −a −1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 −a −1 0
0 0 · · · 0 −1 −a −1

−1 0 0 · · · 0 −1 −a

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

,
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where a = (ωk + ωn−1
k ) − λ, b = ωr

k . Multiplying by b j/2−1 in columns j and j + 1
when j is even and m ≥ j > 2, then multiplying by b in rows 2 and by b−( j−1)/2+1

in rows j and j + 1 when j is odd and m > j > 3, we have

b
m
2 |λEm − f (ωk)|=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a −b 0 · · · 0 0 0 0 −b
m
2 −1

−1 −ab −b 0 · · · 0 0 0 0
0 −1 −a −b 0 · · · 0 0 0
0 0 −1 −ab −b 0 · · · 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · 0 −1 −a −b 0 0
0 0 0 · · · 0 −1 −ab −b 0
0 0 0 0 · · · 0 −1 −a −b

−b2− m
2 0 0 0 0 · · · 0 −1 −ab

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m×m

=
∣∣∣b1− m

2 − circ(A
′
, B

′
, 0, . . . , 0, C

′
)

∣∣∣ ,

where

A
′ =

(−a −b
−1 −ab

)
, B

′ =
(

0 0
−b 0

)
, C

′ =
(

0 −b
m
2 −1

0 0

)
.

By Lemma 1,

b
m
2 |λEm − f (ωk)| = b

m
2

m
2 −1∏

j=0

∣∣∣A
′ + B

′
ε j + C

′
ε

m
2 −1
j

∣∣∣ ,

where ε j = cos 4njπ−2rmkπ+4rkπ
mn + i sin 4njπ−2rmkπ+4rkπ

mn .

Let b
m
2 |λEm − f (ωk)| = 0, then we have

m
2 −1∏

j=0

∣∣∣A
′ + B

′
ε j + C

′
ε

m
2 −1
j

∣∣∣ =
m
2 −1∏

j=0

∣∣∣a2b − 2b − b2ε j − ε−1
j

∣∣∣ = 0. (2)

By (2), we can obtain

a = ±2 cos(2π j/m + 2πrk/mn).

Hence, the eigenvalues of A(G) are

λk+ j =
(
ωk + ωn−1

k

)
+ a

= cos 2kπ
n + i sin 2kπ

n + cos 2(n−1)kπ
n + i sin 2(n−1)kπ

n ± 2 cos
(

2 jπ
m + 2rkπ

mn

)

= 2 cos 2kπ
n ± 2 cos

(
2 jπ
m + 2rkπ

mn

)
,

where k = 0, 1, . . . , n − 1, j = 0, 1, . . . , m
2 − 1. �
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Specially, when r = 0, Formula (1) can be gotten by Theorem 2.

4 Enumeration of spanning trees of Pm,n,r

Theorem 3 If m is even, then the number of spanning tree of the Pm,n,r can be
expressed by

2mn

mn

n−1∏

k=0

m
2 −1∏

j=0
(k, j) �=(0,0)

[
4 − 4 cos

2kπ

n
+ cos2 2kπ

n
− cos2

(
2rkπ

mn
+ 2 jπ

m

)]
.

Proof Note that the degree of every vertex of Pm,n,r is 4, the Laplacian matrix L(G) =
4Imn − A(G), and the Laplacian eigenvalues are u j = 4 − λ j , where λ j are the
eigenvalues of A(G). Noticing u0 = 0, we have

t (G) = 1

mn

n−1∏

k=0

m
2 −1∏

j=0
(k, j) �=(0,0)

[
4 − 2 cos

2kπ

n
− 2 cos

(
2rkπ

mn
+ 2 jπ

m

)]

×
[

4 − 2 cos
2kπ

n
+ 2 cos

(
2rkπ

mn
+ 2 jπ

m

)]

= 2mn

mn

n−1∏

k=0

m
2 −1∏

j=0
(k, j) �=(0,0)

[
4 − 4 cos

2kπ

n
+ cos2 2kπ

n
− cos2

(
2rkπ

mn
+ 2 jπ

m

)]
.

By the definition of the asymptotic tree number entropy, we have

z(G) = lim
m→∞
n→∞

log t (G)

mn

= ln 2 + lim
m→∞
n→∞

n−1∑

k=0

m
2 −1∑

j=0
(k, j)�=(0,0)

ln

[
4 − 4 cos

2kπ

n
+ cos2 2kπ

n
− cos2

(
2rkπ

mn
+ 2 jπ

m

)]

= ln 2 + 1

4π2

2π∫

0

π∫

0

ln(4 − 4 cos x + cos2 x − cos2 y)dxdy ≈ 1.1662.

That is the asymptotic tree number entropy of Pm,n,r is the same as the one of
Pm,n . 	
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