The spectrum and spanning trees of polyominos on the torus

Fuliang Lu • Yajun Gong • Houchun Zhou

Received: 12 March 2014 / Accepted: 17 March 2014 / Published online: 23 March 2014
© Springer International Publishing Switzerland 2014

Abstract

Polyominos was extensively studied in chemistry and mathematics. The spectrum of a (molecule) graph is the set of eigenvalues of its adjacency matrix. The spectrum and the number of spanning trees of polyominos on the torus are determined in this paper.

Keywords Polyominos \cdot Spectra \cdot Spanning trees

1 Introduction

A polyomino, also called quadrilateral lattice, chessboard [3], square-cell configuration or lattice animal [7,8,11], is a finite 2-connected geometric graph in which every interior face is bounded by a regular square of side length 1 (i.e. called a cell). Polyominos have attracted many mathematicians', physicists' and chemists' considerable attentions in history. Many interesting combinatorial subjects are yielded from them, such as domination problem [3,5], spanning trees [12] and rook polyominal [10] etc. Zhang and Zhang [13] gave a necessary and sufficient conditions for polyomino graphs to have a Kekulé structure. Calkin and Wilf [1] counted the number of independent sets in a polyomino graph. Merino and Welsh [9] considered the forest, colourings and acyclic orientations on the polyomino.

An $m \times n$ polyomino, denoted by $P_{m, n}$, consists of $m n$ sites arranged in an array of M rows and N columns, see Fig. 1a. By adding edges $a_{1} a_{n}, b_{1} b_{n}, u_{j} v_{j}(j=$ $1,2, \ldots, m-2$), an $m \times n$ polyomino with cylindrical boundary condition can be gotten, denoted by $P_{m, n}^{c}$. By adding edges $a_{1} a_{n}, b_{1} b_{n}, u_{j} v_{j}(j=1,2, \ldots, m-2)$ and $a_{k} b_{k+r}(i=1,2, \ldots, n, 0 \leq r<n)$ to $P_{m, n}$, an $m \times n$ polyomino with the twisted toroidal boundary condition can be gotten, denoted by $P_{m, n, r}$.

[^0](a)

(b)

Fig. 1 a A $m \times n$ polyomino $P_{m, n}$; b the labeling of $P_{m, n, r}$

Let $G=(V(G), E(G))$ denote a (molecule) graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The degree k_{s} of a vertex v_{s} is the number of edges attached to it. A k-regular graph is a graph with the property that each of its vertices has the same degree k. The adjacency matrix $A(G)$ of G is the $n \times n$ matrix with elements $A(G)_{s j}=1$ if v_{s} and v_{j} are connected by an edge and zero otherwise. The Laplacian matrix $L(G)$ is the $n \times n$ matrix with the element $L(G)_{s j}=k_{s} \delta_{s j}-A(G)_{s j}$, where $\delta_{s j}$ is the Kronecker delta, equal to 1 if $s=j$ and zero otherwise. Suppose $\lambda_{j}(j=1,2, \ldots, n)$ are the eigenvalues of the adjacency matrix $A(G)$. Suppose $\mu_{j}(j=1,2, \ldots, n)$ are the eigenvalues of the Laplacian matrix $L(G)$, where $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$. We know that $\mu_{1}=0$, then the number of spanning trees of a graph G can be expressed by

$$
t(G)=\frac{1}{n} \prod_{j=2}^{n} \mu_{j}
$$

It turns out that $t(G)$ has asymptotically exponential growth; one defines the quantity $z(G)$ by

$$
z(G)=\lim _{|V(G)| \rightarrow \infty} \frac{\log t(G)}{|V(G)|}
$$

This limit is known as the asymptotic tree number entropy, asymptotic growth constant or thermodynamical limit.

The spectrum of $P_{m, n}^{c}$ has been gotten (see for example Section 2.6 in [4]). It can be expressed as follows:

$$
2 \cos \frac{2 k \pi}{n}+2 \cos \frac{j \pi}{m+1}, \quad k=1, \ldots, n, j=1, \ldots, m .
$$

And the eigenvalue of $P_{m, n, 0}$ can be expressed as follows (see for example Section 2.6 in [4]):

$$
\begin{equation*}
2 \cos \frac{2 k \pi}{n} \pm 2 \cos \frac{2 j \pi}{m}, \quad k=0,1, \ldots, n-1, j=0,1, \ldots, \frac{m}{2}-1 \tag{1}
\end{equation*}
$$

Wu [12] has obtained closed-form expressions for the number of spanning tree of $P_{m, n}$ and the asymptotic tree number entropy is 1.1662 .

In this paper, we consider the spectrum and spanning trees of $P_{m, n, r}$. In Sect. 2, we present a lemma. The spectrum of $P_{m, n, r}$ is obtained in Sect. 3 and the number of spanning trees of $P_{m, n, r}$ is gotten in Sect. 4.

2 A lemma

Firstly, we need a lemma. Denote the k block circulant matrix

$$
\left(\begin{array}{ccccc}
V_{0} & V_{1} & V_{2} & \cdots & V_{n-1} \\
k V_{n-1} & V_{0} & V_{1} & \cdots & V_{n-2} \\
k V_{n-2} & k V_{n-1} & V_{0} & \cdots & V_{n-3} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
k V_{1} & k V_{2} & \cdots & k V_{n-1} & V_{0}
\end{array}\right)
$$

by $k-\operatorname{circ}\left(V_{0}, V_{1}, \ldots, V_{n-1}\right)$.
Lemma 1 ([2]) Let $V=k-\operatorname{circ}\left(V_{0}, V_{1}, \ldots, V_{n-1}\right)$ be a k block circulant matrix over the complex number field, where all V_{t} are $m \times m$ matrices, $t=0,1, \ldots, n-1$. Then

$$
\operatorname{det} V=\prod_{t=0}^{n-1} \operatorname{det}\left(J_{t}\right)
$$

where $J_{t}=V_{0}+V_{1} \omega+V_{2} \omega^{2}+\cdots+V_{n-1} \omega^{n-1}, \omega$ is a primitive nth root of k.

3 The spectrum of square lattice

Theorem 2 If m is even, then the spectrum of the $P_{m, n, r}$ can be expressed by
$2 \cos \frac{2 k \pi}{n} \pm 2 \cos \left(\frac{2 j \pi}{m}+\frac{2 r k \pi}{m n}\right), \quad k=0,1, \ldots, n-1, j=0,1, \ldots, \frac{m}{2}-1$.
Proof Label the vertices of the $P_{m, n, r}$ as Fig. 1b shows. Then the adjacent matrix of it has the following form:
$A(G)=1-\operatorname{circ}(A_{m}, E_{m}, \overbrace{0_{m}, \ldots, 0_{m}}^{r-2}, B_{m}, 0_{m}, \ldots, 0_{m}, B_{m}^{T}, \overbrace{0_{m}, \ldots, 0_{m}}^{r-2}, E_{m})$, where

$$
A_{m}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right)_{m \times m} \quad, \quad B_{m}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)_{m \times m}
$$

B^{T} is the transpose of B, E_{m} is the $m \times m$ identity matrix, 0_{m} is an $m \times m$ matrix and all its entries are zero.

Next, we calculate the eigenvalue value of $A(G)$. The characteristic polynomial of $A(G)$ is

$$
\phi(\lambda)=\left|\lambda E_{m n}-A(G)\right| .
$$

By Lemma 1, we have

$$
\phi(\lambda)=\prod_{k=0}^{n-1}\left|\lambda E_{m}-f\left(\omega_{k}\right)\right|,
$$

where $f(x)=A+x E+x^{r} B+x^{n-r+1} B^{T}+x^{n-1} E$ and $\omega_{k}=\cos (2 k \pi / n)+$ $i \sin (2 k \pi / n)$.

Note that

$$
\lambda E_{m}-f\left(\omega_{k}\right)=\left(\begin{array}{ccccccc}
-a & -b & 0 & \cdots & 0 & 0 & -1 \\
-b^{-1} & -a & -1 & 0 & \cdots & 0 & 0 \\
0 & -1 & -a & -1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & -a & -1 & 0 \\
0 & 0 & \cdots & 0 & -1 & -a & -1 \\
-1 & 0 & 0 & \cdots & 0 & -1 & -a
\end{array}\right)_{m \times m}
$$

where $a=\left(\omega_{k}+\omega_{k}^{n-1}\right)-\lambda, b=\omega_{k}^{r}$. Multiplying by $b^{j / 2-1}$ in columns j and $j+1$ when j is even and $m \geq j>2$, then multiplying by b in rows 2 and by $b^{-(j-1) / 2+1}$ in rows j and $j+1$ when j is odd and $m>j>3$, we have

$$
\begin{aligned}
b^{\frac{m}{2}}\left|\lambda E_{m}-f\left(\omega_{k}\right)\right| & =\left|\begin{array}{ccccccccc}
-a & -b & 0 & \cdots & 0 & 0 & 0 & 0 & -b^{\frac{m}{2}-1} \\
-1 & -a b & -b & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -1 & -a & -b & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -1 & -a b & -b & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & -1 & -a & -b & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & -a b & -b & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & -a & -b \\
-b^{2-\frac{m}{2}} & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & -a b
\end{array}\right|_{m \times m} \\
& =\left|b^{1-\frac{m}{2}}-\operatorname{circ}\left(A^{\prime}, B^{\prime}, 0, \ldots, 0, C^{\prime}\right)\right|
\end{aligned}
$$

where

$$
A^{\prime}=\left(\begin{array}{cc}
-a & -b \\
-1 & -a b
\end{array}\right), \quad B^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
-b & 0
\end{array}\right), \quad C^{\prime}=\left(\begin{array}{cc}
0 & -b^{\frac{m}{2}-1} \\
0 & 0
\end{array}\right) .
$$

By Lemma 1,

$$
b^{\frac{m}{2}}\left|\lambda E_{m}-f\left(\omega_{k}\right)\right|=b^{\frac{m}{2}} \prod_{j=0}^{\frac{m}{2}-1}\left|A^{\prime}+B^{\prime} \varepsilon_{j}+C^{\prime} \varepsilon_{j}^{\frac{m}{2}-1}\right|
$$

where $\varepsilon_{j}=\cos \frac{4 n j \pi-2 r m k \pi+4 r k \pi}{m n}+i \sin \frac{4 n j \pi-2 r m k \pi+4 r k \pi}{m n}$.
Let $b^{\frac{m}{2}}\left|\lambda E_{m}-f\left(\omega_{k}\right)\right|=0$, then we have

$$
\begin{equation*}
\prod_{j=0}^{\frac{m}{2}-1}\left|A^{\prime}+B^{\prime} \varepsilon_{j}+C^{\prime} \varepsilon_{j}^{\frac{m}{2}-1}\right|=\prod_{j=0}^{\frac{m}{2}-1}\left|a^{2} b-2 b-b^{2} \varepsilon_{j}-\varepsilon_{j}^{-1}\right|=0 \tag{2}
\end{equation*}
$$

By (2), we can obtain

$$
a= \pm 2 \cos (2 \pi j / m+2 \pi r k / m n) .
$$

Hence, the eigenvalues of $A(G)$ are

$$
\begin{aligned}
\lambda_{k+j} & =\left(\omega_{k}+\omega_{k}^{n-1}\right)+a \\
& =\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}+\cos \frac{2(n-1) k \pi}{n}+i \sin \frac{2(n-1) k \pi}{n} \pm 2 \cos \left(\frac{2 j \pi}{m}+\frac{2 r k \pi}{m n}\right) \\
& =2 \cos \frac{2 k \pi}{n} \pm 2 \cos \left(\frac{2 j \pi}{m}+\frac{2 r k \pi}{m n}\right),
\end{aligned}
$$

where $k=0,1, \ldots, n-1, j=0,1, \ldots, \frac{m}{2}-1$.

Specially, when $r=0$, Formula (1) can be gotten by Theorem 2.

4 Enumeration of spanning trees of $\boldsymbol{P}_{\boldsymbol{m}, \boldsymbol{n}, r}$

Theorem 3 If m is even, then the number of spanning tree of the $P_{m, n, r}$ can be expressed by

$$
\frac{2^{m n}}{m n} \prod_{\substack{k=0 \\(k, j) \neq(0,0)}}^{n-1} \prod_{j=0}^{\frac{m}{2}-1}\left[4-4 \cos \frac{2 k \pi}{n}+\cos ^{2} \frac{2 k \pi}{n}-\cos ^{2}\left(\frac{2 r k \pi}{m n}+\frac{2 j \pi}{m}\right)\right] .
$$

Proof Note that the degree of every vertex of $P_{m, n, r}$ is 4, the Laplacian matrix $L(G)=$ $4 I_{m n}-A(G)$, and the Laplacian eigenvalues are $u_{j}=4-\lambda_{j}$, where λ_{j} are the eigenvalues of $A(G)$. Noticing $u_{0}=0$, we have

$$
\begin{aligned}
t(G)= & \frac{1}{m n} \prod_{\substack{k=0 \\
(k, j) \neq(0,0)}}^{n-1} \prod_{j=0}^{\frac{m}{2}-1}\left[4-2 \cos \frac{2 k \pi}{n}-2 \cos \left(\frac{2 r k \pi}{m n}+\frac{2 j \pi}{m}\right)\right] \\
& \times\left[4-2 \cos \frac{2 k \pi}{n}+2 \cos \left(\frac{2 r k \pi}{m n}+\frac{2 j \pi}{m}\right)\right] \\
= & \frac{2^{m n}}{m n} \prod_{\substack{k=0 \\
(k, j) \neq(0,0)}}^{n-1} \prod_{j=0}^{\frac{m}{2}-1}\left[4-4 \cos \frac{2 k \pi}{n}+\cos ^{2} \frac{2 k \pi}{n}-\cos ^{2}\left(\frac{2 r k \pi}{m n}+\frac{2 j \pi}{m}\right)\right] .
\end{aligned}
$$

By the definition of the asymptotic tree number entropy, we have

$$
\begin{aligned}
z(G) & =\lim _{\substack{n \rightarrow \infty \\
n \rightarrow \infty}} \frac{\log t(G)}{m n} \\
& =\ln 2+\lim _{\substack{n \rightarrow \infty \\
n \rightarrow \infty}} \sum_{\substack{k=0 \\
(k, j) \neq(0,0)}}^{n-1} \sum_{\substack{\frac{m}{2}-1}} \ln \left[4-4 \cos \frac{2 k \pi}{n}+\cos ^{2} \frac{2 k \pi}{n}-\cos ^{2}\left(\frac{2 r k \pi}{m n}+\frac{2 j \pi}{m}\right)\right] \\
& =\ln 2+\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{\pi} \ln \left(4-4 \cos x+\cos ^{2} x-\cos ^{2} y\right) d x d y \approx 1.1662 .
\end{aligned}
$$

That is the asymptotic tree number entropy of $P_{m, n, r}$ is the same as the one of $P_{m, n}$.

Acknowledgments This work is supported by NSFC (Grant Nos. 11171279, 11226288, 11271226 and 11301251), promotive research fund for excellent young and middle-aged scientists of Shandong province (Grant No. BS2013DX026) and AMEP of Linyi University

References

1. N.J. Calkin, H.S. Wilf, The number of independent sets in a grid graph. SIAM J. Discret. Math. 11, 54-60 (1998)
2. J. Chen, X. Chen, Special Matrices (Tsinghua Press, Beijing, 2001) (in Chinese)
3. E.J. Cockayne, Chessboard domination problems. Discret. Math. 86, 13-20 (1990)
4. M. Dragos̆, M. Cvetković, H. Doob, Sachs, Spectra of Graphs: Theory and Application (Academic Press, London, 1980)
5. C.M. Grinstead, B. Hahne, D. Van Stone, On the queen domination problem. Discret. Math. 86, 21-26 (1990)
6. I. Gutman, The energy of a graph: old and new results, in Algebraic Combinatorics and Applications, ed. by A. Betten, A. Kohnert, R. Laue, A. Wassermann (Springer, Berlin, 2001), pp. 196-211
7. F. Harary, P.G. Mezey, The diet transform of lattice patterns, equivalence relations, and similarity measures. Mol. Eng. 6(4), 415-416 (1996)
8. F. Harary, P.G. Mezey, Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations. Int. J. Quantum Chem. 62(4), 353-361 (1997)
9. C. Merino, D.J.A. Welsh, Forests, colourings and acyclic orientations of the square lattice. Ann. Comb. 3, 417-429 (1999)
10. A. Motoyama, H. Hosoya, King and domino polyominals for polyomino graphs. J. Math. Phys. 18, 1485-1490 (1997)
11. P.D. Walker, P.G. Mezey, Representation of square-cell configurations in the complex plane: tools for the characterization of molecular monolayers and cross sections of molecular surfaces. Int. J. Quantum Chem. 43(3), 375-392 (1992)
12. F.Y. Wu, Number of spanning trees on a lattice. J. Phys. A Math. Gen. 10, L113-L115 (1977)
13. H.P. Zhang, F.J. Zhang, Perfect matchings of polyomino graphs. Graphs Comb. 13, 295-304 (1997)

[^0]: F. Lu (\boxtimes) • Y. Gong • H. Zhou

 School of Sciences, Linyi University, Linyi 276005, Shandong, People's Republic of China
 e-mail: flianglu@163.com

